Leveraging Variational Autoencoder for Improved Construction Progress Prediction Performance

Fatemeh Mostofi*, Onur Behzat Tokdemir, Vedat Toğan

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

The imbalanced construction dataset reduces the accuracy of the machine learning model. This issue that addressed by recent construction management research through different sampling approaches. Despite their advantages, the utilized sampling approaches are reducing the reliability of the prediction model, while posing the risk of artificial bias. The objective of this study is to address the challenge of imbalanced datasets in construction progress prediction models using a novel variational autoencoder (VAE) that generates synthetic data for underrepresented classes. The VAE's encoder-decoder architecture, along with its latent space components, is optimized for this task. A comparative analysis using decision tree-based ML models, including grid search optimization, substantiated the effectiveness of the VAE approach. The results indicate that the hybrid dataset benefited the ML models from the addition of the synthesized dataset, showing 2% improvements in performance metrics across most models. The synthetic data generated by VAEs contributes to the construction of more balanced datasets, which, in turn, can lead to more reliable and accurate predictive models. The enhanced accuracy of the VAE-ML model addresses the class imbalance problem and improves the reliability of construction productivity predictions and related resource allocation plans.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings of the 10th International Conference on Civil Engineering
EditörlerGuangliang Feng
YayınlayanSpringer Science and Business Media Deutschland GmbH
Sayfalar538-545
Sayfa sayısı8
ISBN (Basılı)9789819743544
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik10th International Conference on Civil Engineering, ICCE2023 - Nanchang, China
Süre: 24 Ara 202325 Ara 2023

Yayın serisi

AdıLecture Notes in Civil Engineering
Hacim526 LNCE
ISSN (Basılı)2366-2557
ISSN (Elektronik)2366-2565

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???10th International Conference on Civil Engineering, ICCE2023
Ülke/BölgeChina
ŞehirNanchang
Periyot24/12/2325/12/23

Bibliyografik not

Publisher Copyright:
© The Author(s) 2024.

Parmak izi

Leveraging Variational Autoencoder for Improved Construction Progress Prediction Performance' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap