Learning guided planning for robust task execution in cognitive robotics

Sertac Karapinar, Sanem Sariel-Talay, Petek Yildiz, Mustafa Ersen

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

8 Atıf (Scopus)

Özet

A cognitive robot may face failures during the execution of its actions in the physical world. In this paper, we investigate how robots can ensure robustness by gaining experience on action executions, and we propose a lifelong experimental learning method. We use Inductive Logic Programming (ILP) as the learning method to frame new hypotheses. ILP provides first-order logic representations of the derived hypotheses that are useful for reasoning and planning processes. Furthermore, it can use background knowledge to represent more advanced rules. Partially specified world states can also be easily represented in these rules. All these advantages of ILP make this approach superior to attribute-based learning approaches. Experience gained through incremental learning is used as a guide to future decisions of the robot for robust execution. The results on our Pioneer 3DX robot reveal that the hypotheses framed for failure cases are sound and ensure safety in future tasks of the robot.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIntelligent Robotic Systems - Papers from the 2013 AAAI Workshop, Technical Report
YayınlayanAI Access Foundation
Sayfalar26-31
Sayfa sayısı6
ISBN (Basılı)9781577356219
Yayın durumuYayınlandı - 2013
Etkinlik2013 AAAI Workshop - Bellevue, WA, United States
Süre: 14 Tem 201315 Tem 2013

Yayın serisi

AdıAAAI Workshop - Technical Report
HacimWS-13-10

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2013 AAAI Workshop
Ülke/BölgeUnited States
ŞehirBellevue, WA
Periyot14/07/1315/07/13

Parmak izi

Learning guided planning for robust task execution in cognitive robotics' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap