Kernels, inflations, evaluations, and imprimitivity of Mackey functors

Ergün Yaraneri*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

3 Atıf (Scopus)

Özet

Let M be a Mackey functor for a finite group G. By the kernel of M we mean the largest normal subgroup N of G such that M can be inflated from a Mackey functor for G / N. We first study kernels of Mackey functors, and (relative) projectivity of inflated Mackey functors. For a normal subgroup N of G, denoting by PH, VG the projective cover of a simple Mackey functor for G of the form SH, VG we next try to answer the question: how are the Mackey functors PH / N, VG / N and PH, VG related? We then study imprimitive Mackey functors by which we mean Mackey functors for G induced from Mackey functors for proper subgroups of G. We obtain some results about imprimitive Mackey functors of the form PH, VG, including a Mackey functor version of Fong's theorem on induced modules of modular group algebras of p-solvable groups. Aiming to characterize subgroups H of G for which the module PH, VG (H) is the projective cover of the simple K over(N, -)G (H)-module V where the coefficient ring K is a field, we finally study evaluations of Mackey functors.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1993-2029
Sayfa sayısı37
DergiJournal of Algebra
Hacim319
Basın numarası5
DOI'lar
Yayın durumuYayınlandı - 1 Mar 2008
Harici olarak yayınlandıEvet

Parmak izi

Kernels, inflations, evaluations, and imprimitivity of Mackey functors' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap