Investigation of numerical solution for fourth-order nonlocal problem by the reproducing kernel method

Kemal Özen*, Kamil Oruçoǧlu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

4 Atıf (Scopus)

Özet

This work investigates the approximate solution for fourth-order multi-point boundary value problem represented by linear integro-differential equation involving nonlocal integral boundary conditions by using the reproducing kernel method (RKM). The investigated solution is represented in the form of a series with easily computable components in the reproducing kernel space. When the used algorithm for approximation is applied directly for the given original conditions, it can be very troublesome to compute the reproducing kernel of space. Therefore firstly, it is considered more appropriate conditions to be computed the kernel easily than original ones. Nextly, the original conditions are taken into account. Analysis is illustrated by a numerical example. The results demonstrate that the method is quite accurate and effective.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıNumerical Analysis and Applied Mathematics, ICNAAM 2011 - International Conference on Numerical Analysis and Applied Mathematics
Sayfalar1164-1167
Sayfa sayısı4
DOI'lar
Yayın durumuYayınlandı - 2011
EtkinlikInternational Conference on Numerical Analysis and Applied Mathematics: Numerical Analysis and Applied Mathematics, ICNAAM 2011 - Halkidiki, Greece
Süre: 19 Eyl 201125 Eyl 2011

Yayın serisi

AdıAIP Conference Proceedings
Hacim1389
ISSN (Basılı)0094-243X
ISSN (Elektronik)1551-7616

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???International Conference on Numerical Analysis and Applied Mathematics: Numerical Analysis and Applied Mathematics, ICNAAM 2011
Ülke/BölgeGreece
ŞehirHalkidiki
Periyot19/09/1125/09/11

Parmak izi

Investigation of numerical solution for fourth-order nonlocal problem by the reproducing kernel method' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap