Initial explorations on using CRFs for turkish named entity recognition

Gökhan Akin Şseker*, Güļsen Eryǐgit

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Yazıbilirkişi

52 Atıf (Scopus)

Özet

This paper reports the highest results (95% in MUC and 92% in CoNLL metric) in the literature for Turkish named entity recognition; more specifically for the task of detecting person, location and organization entities in general news texts. We give an in depth analysis of the previous reported results and make comparisons with them whenever possible. We use conditional random fields (CRFs) as our statistical model. The paper presents initial explorations on the usage of rich morphological structure of the Turkish language as features to CRFs together with the use of some basic and generative gazetteers.

Orijinal dilİngilizce
Sayfalar2459-2474
Sayfa sayısı16
Yayın durumuYayınlandı - 2012
Etkinlik24th International Conference on Computational Linguistics, COLING 2012 - Mumbai, India
Süre: 8 Ara 201215 Ara 2012

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???24th International Conference on Computational Linguistics, COLING 2012
Ülke/BölgeIndia
ŞehirMumbai
Periyot8/12/1215/12/12

Parmak izi

Initial explorations on using CRFs for turkish named entity recognition' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap