Improving WRF GHI forecasts with model output statistics

Burak Barutcu*, Seyda Tilev Tanriover, Serim Sakarya, Selahattin Incecik, F. Mert Sayinta, Erhan Caliskan, Abdullah Kahraman, Bulent Aksoy, Ceyhan Kahya, Sema Topcu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Bölümbilirkişi

1 Atıf (Scopus)

Özet

Solar energy applications need reliable forecasting of solar irradiance. In this study, we present an assessment of a short-term global horizontal irradiance forecasting system based on Advanced Research Weather Research and Forecasting (WRF-ARW) meteorological model and neural networks as a post-processing method to improve the skill of the system in a highly favorable location for the utilization of solar power in Turkey. The WRF model was used to produce 1 month of 3 days ahead solar irradiance forecasts covering Southeastern Anatolia of Turkey with a horizontal resolution of 4 km. Single-input single-output (SISO) and multi-input single-output (MISO) artificial neural networks (ANN) were used. Furthermore, the overall results of the forecasting system were evaluated by means of statistical indicators: mean bias error, relative mean bias error, root mean square error, and relative root mean square error. The MISO ANN gives better results than the SISO ANN in terms of improving the model predictions, provided by WRF-ARW simulations for August 2011.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProgress in Clean Energy, Volume 1
Ana bilgisayar yayını alt yazısıAnalysis and Modeling
YayınlayanSpringer International Publishing
Sayfalar291-299
Sayfa sayısı9
ISBN (Elektronik)9783319167091
ISBN (Basılı)9783319167084
DOI'lar
Yayın durumuYayınlandı - 1 Oca 2015

Bibliyografik not

Publisher Copyright:
© Springer International Publishing Switzerland 2015.

Parmak izi

Improving WRF GHI forecasts with model output statistics' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap