Improving the performance of optimal joint decoding

Ulug Bayazit*, William A. Pearlman

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Konferansa katkıYazıbilirkişi

Özet

The optimal joint decoder utilizing NLIVQ (Nonlinear Interpolative Vector Quantization) introduced by Gersho in [1] results in vector quantizers which have reduced encoding complexity at the expense of coding performance loss due to the inferiority of their space-filling property. We show a method of improving a high resolution NLIVQ codebook by partitioning its cells in such a way that the resulting lower resolution codebook consists of cells with better space-filling properties. The resolution reduction method is also extended to the case where the quantizer indices are entropy-constrained. From the simulations it is seen that the unconstrained and constrained entropy versions of the proposed vector quantizer have comparable performance to vector quantizers designed by LBG and ECVQ algorithms.

Orijinal dilİngilizce
Sayfalar113-116
Sayfa sayısı4
Yayın durumuYayınlandı - 1996
Harici olarak yayınlandıEvet
EtkinlikProceedings of the 1995 IEEE International Conference on Image Processing. Part 3 (of 3) - Washington, DC, USA
Süre: 23 Eki 199526 Eki 1995

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???Proceedings of the 1995 IEEE International Conference on Image Processing. Part 3 (of 3)
ŞehirWashington, DC, USA
Periyot23/10/9526/10/95

Parmak izi

Improving the performance of optimal joint decoding' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap