Identifying Concept Drift with Supervised Algorithms in Smart Grids

Ayse Sayin, Mostafa Mohammadpourfard, Mehmet Tahir Sandikkaya

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

2 Atıf (Scopus)

Özet

Early and correct disclosure of anomality is critical for realiable and secure activity of the smart grid. Machine learning based outlier detection schemes could be helpful when there is no concept drift in the smart grid. Concept drift is considered an unforeseeable change in the distribution of the data in machine learning [4]. In this study, an anomaly detection is formulated as a machine learning problem and a robust detection algorithm is proposed. Numerical results demonstrate effectiveness of the proposed solution to detect anomaly and contingency besides integrity attacks in the smart grid.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings - 2023 IEEE PES GTD International Conference and Exposition, GTD 2023
EditörlerMehmet Tahir Sandikkaya, Omer Usta
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar263-267
Sayfa sayısı5
ISBN (Elektronik)9781728170251
DOI'lar
Yayın durumuYayınlandı - 2023
Etkinlik2023 IEEE PES Generation, Transmission and Distribution International Conference and Exposition, GTD 2023 - Istanbul, Turkey
Süre: 22 May 202325 May 2023

Yayın serisi

AdıProceedings - 2023 IEEE PES GTD International Conference and Exposition, GTD 2023

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2023 IEEE PES Generation, Transmission and Distribution International Conference and Exposition, GTD 2023
Ülke/BölgeTurkey
ŞehirIstanbul
Periyot22/05/2325/05/23

Bibliyografik not

Publisher Copyright:
© 2023 IEEE.

Parmak izi

Identifying Concept Drift with Supervised Algorithms in Smart Grids' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap