ICPGAN: Intensity Component guided Pansharpening using Generative Adversarial Network with Dual Discriminators

Nahide Nesli Cesur*, Kaan Özdoǧan, Işin Erer

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

CNN-based pansharpening methods use reduced resolution panchromatic and multispectral images due to the lack of a reference image, resulting in a mismatch problem when mapping to the reduced resolution images. We propose a pansharpening model which utilizes a reduced resolution multispectral image and the intensity component of a high resolution multispectral image instead of a reduced resolution panchromatic image, in the training process. The model comprises of two separate discriminators, each of which focuses on the spatial or spectral details of the given input. Additionally, the generator takes multispectral and panchromatic images, concatenates them and produces a synthetic image that closely resembles the original multispectral image. The results were compared to previous CNN-based methods and traditional methods both visually and in terms of evaluation metricd such as as ERGAS, SAM, QNR and Q.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2023 31st Telecommunications Forum, TELFOR 2023 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9798350303131
DOI'lar
Yayın durumuYayınlandı - 2023
Etkinlik31st Telecommunications Forum, TELFOR 2023 - Belgrade, Serbia
Süre: 21 Kas 202322 Kas 2023

Yayın serisi

Adı2023 31st Telecommunications Forum, TELFOR 2023 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???31st Telecommunications Forum, TELFOR 2023
Ülke/BölgeSerbia
ŞehirBelgrade
Periyot21/11/2322/11/23

Bibliyografik not

Publisher Copyright:
© 2023 IEEE.

Parmak izi

ICPGAN: Intensity Component guided Pansharpening using Generative Adversarial Network with Dual Discriminators' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap