Hydrophobicity Tuned Polymeric Redox Materials with Solution-Specific Electroactive Properties for Selective Electrochemical Metal Ion Recovery in Aqueous Environments

Kai Jher Tan, Satoshi Morikawa, Ali Hemmatifar, Nil Ozbek, Yayuan Liu, T. Alan Hatton*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

6 Atıf (Scopus)

Özet

Adaptable redox-active materials hold great potential for electrochemically mediated separation processes via targeted molecular recognition and reduced energy requirements. This work presents molecularly tunable vinylferrocene metallopolymers (P(VFc-co-X)) with modifiable operating potentials, charge storage capacities, capacity retentions, and analyte affinities in various electrolyte environments based on the hydrophobicity of X. The styrene (St) co-monomer impedes hydrophobic anions from ferrocene access, providing P(VFc-co-St) with specific response capabilities for and greatly improved cyclabilities in hydrophilic anions. This adjustable electrochemical stability enables preferential chromium and rhenium oxyanion separation from both hydrophobic and hydrophilic electrolytes that significantly surpasses capacitive removal by an order of magnitude, with a robust perrhenate uptake capacity of 329 mg/g VFc competitive with established metal-organic framework physisorbents and 17-fold selectivity over 20-fold excess nitrate. Pairing P(VFc-co-X) with other solution-specific electroactive macromolecules such as the pH-dependent poly(hydroquinone) (PHQ) and the cesium-selective nickel hexacyanoferrate (NiHCF) generates dual-functionalized electrosorption cells. P(VFc-co-X)//PHQ offers optimizable energetics based on X and pH for a substantial 4.6-fold reduction from 0.21 to 0.04 kWh/mol rhenium in acidic versus near-neutral media, and P(VFc-co-St)//NiHCF facilitates simultaneous extraction of rhenium, chromium, and cesium ions. Proof-of-concept reversible perrhenate separation in flow further highlights such frameworks as promising approaches for next-generation water purification technologies.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)43859-43870
Sayfa sayısı12
DergiACS applied materials & interfaces
Hacim15
Basın numarası37
DOI'lar
Yayın durumuYayınlandı - 20 Eyl 2023
Harici olarak yayınlandıEvet

Bibliyografik not

Publisher Copyright:
© 2023 American Chemical Society

Parmak izi

Hydrophobicity Tuned Polymeric Redox Materials with Solution-Specific Electroactive Properties for Selective Electrochemical Metal Ion Recovery in Aqueous Environments' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap