Hierarchical HMM-based failure isolation for cognitive robots

Dogan Altan, Sanem Sariel-Talay

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

3 Atıf (Scopus)

Özet

Robots execute their planned actions in the physical world to accomplish their goals. However, since the real world is partially observable and dynamic, failures may occur during the execution of their actions. These failures should be detected immediately, and the underlying reasons of these failures should be isolated to ensure robustness. In this paper, we propose a probabilistic and temporal model-based failure isolation method that maintains Hierarchical Hidden Markov Models (HHMMs) in order to represent and reason about different failure types. The underlying reason of a failure can be isolated efficiently by multi-hypothesis tracking.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıICAART 2014 - Proceedings of the 6th International Conference on Agents and Artificial Intelligence
YayınlayanSciTePress
Sayfalar299-304
Sayfa sayısı6
ISBN (Basılı)9789897580161
Yayın durumuYayınlandı - 2014
Etkinlik6th International Conference on Agents and Artificial Intelligence, ICAART 2014 - Angers, Loire Valley, France
Süre: 6 Mar 20148 Mar 2014

Yayın serisi

AdıICAART 2014 - Proceedings of the 6th International Conference on Agents and Artificial Intelligence
Hacim2

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???6th International Conference on Agents and Artificial Intelligence, ICAART 2014
Ülke/BölgeFrance
ŞehirAngers, Loire Valley
Periyot6/03/148/03/14

Parmak izi

Hierarchical HMM-based failure isolation for cognitive robots' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap