Height reducing property of polynomials and self-affine tiles

Xing Gang He*, Ibrahim Kirat, Ka Sing Lau

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

14 Atıf (Scopus)

Özet

A monic polynomial f(x)ε ℤ[x] is said to have the height reducing property (HRP) if there exists a polynomial f(x)ε ℤ[x] such that where q = f(0), {Pipe}ai{Pipe} ≤ ({Pipe}q{Pipe} -1), i = 1,..., n and an > 0. We show that any expanding monic polynomial f(x) has the height reducing property, improving a previous result in Kirat et al. (Discrete Comput Geom 31: 275-286, 2004) for the irreducible case. The proof relies on some techniques developed in the study of self-affine tiles. It is constructive and we formulate a simple tree structure to check for any monic polynomial f(x) to have the HRP and to find h(x). The property is used to study the connectedness of a class of self-affine tiles.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)153-164
Sayfa sayısı12
DergiGeometriae Dedicata
Hacim152
Basın numarası1
DOI'lar
Yayın durumuYayınlandı - Haz 2011

Finansman

The research is partially supported by CUHK Focus Investment Schems and the National Natural Science Foundation of China 10771082 and 10871180.

FinansörlerFinansör numarası
CUHK Focus Investment Schems
National Natural Science Foundation of China10871180, 10771082

    Parmak izi

    Height reducing property of polynomials and self-affine tiles' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap