Health Aware Planning under uncertainty for UAV missions with heterogeneous teams

N. Kemal Ure, Girish Chowdhary, Jonathan P. How, Matthew A. Vavrina, John Vian

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

25 Atıf (Scopus)

Özet

In large-scale persistent missions, the vehicle capabilities and health often degrade over time. This paper presents a Health Aware Planning (HAP) Framework for long-duration complex UAV missions by establishing close feedback between the high-level planning based on Markov Decision Processes (MDP) and the execution level learning-focused adaptive controllers. This feedback enables the HAP framework to plan by anticipating the failures and reassessing vehicle capabilities after the failures. This proactive behavior allows for efficient replanning to account for changing capabilities. Simulations for a 4 UAV target tracking scenario is presented to demonstrate the effectiveness of the proactive replanning capability of the presented HAP framework.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2013 European Control Conference, ECC 2013
YayınlayanIEEE Computer Society
Sayfalar3312-3319
Sayfa sayısı8
ISBN (Basılı)9783033039629
DOI'lar
Yayın durumuYayınlandı - 2013
Harici olarak yayınlandıEvet
Etkinlik2013 12th European Control Conference, ECC 2013 - Zurich, Switzerland
Süre: 17 Tem 201319 Tem 2013

Yayın serisi

Adı2013 European Control Conference, ECC 2013

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2013 12th European Control Conference, ECC 2013
Ülke/BölgeSwitzerland
ŞehirZurich
Periyot17/07/1319/07/13

Parmak izi

Health Aware Planning under uncertainty for UAV missions with heterogeneous teams' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap