HaLViT: Half of the Weights are Enough

Onur Can Koyun*, Behçet Uǧur Töreyin

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

Deep learning architectures like Transformers and Convolutional Neural Networks (CNNs) have led to ground-breaking advances across numerous fields. However, their extensive need for parameters poses challenges for implementation in environments with limited resources. In our research, we propose a strategy that focuses on the utilization of the column and row spaces of weight matrices, significantly reducing the number of required model parameters without substantially affecting performance. This technique is applied to both Bottleneck and Attention layers, achieving a notable reduction in parameters with minimal impact on model efficacy. Our proposed model, HaLViT, exemplifies a parameter-efficient Vision Transformer. Through rigorous experiments on the ImageNet dataset and COCO dataset, HaLViT's performance validates the effectiveness of our method, offering results comparable to those of conventional models.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
YayınlayanIEEE Computer Society
Sayfalar3669-3678
Sayfa sayısı10
ISBN (Elektronik)9798350365474
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 - Seattle, United States
Süre: 16 Haz 202422 Haz 2024

Yayın serisi

AdıIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Basılı)2160-7508
ISSN (Elektronik)2160-7516

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
Ülke/BölgeUnited States
ŞehirSeattle
Periyot16/06/2422/06/24

Bibliyografik not

Publisher Copyright:
© 2024 IEEE.

Parmak izi

HaLViT: Half of the Weights are Enough' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap