TY - JOUR
T1 - Growth and gas production of a novel obligatory heterofermentative Cheddar cheese nonstarter lactobacilli species on ribose and galactose
AU - Ortakci, Fatih
AU - Broadbent, Jeffery R.
AU - Oberg, Craig J.
AU - McMahon, Donald J.
N1 - Publisher Copyright:
© 2015 American Dairy Science Association.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - An obligatory heterofermentative lactic acid bacterium, Lactobacillus wasatchii sp. nov., isolated from gassy Cheddar cheese was studied for growth, gas formation, salt tolerance, and survival against pasteurization treatments at 63°C and 72°C. Initially, Lb. wasatchii was thought to use only ribose as a sugar source and we were interested in whether it could also utilize galactose. We conducted experiments to determine the rate and extent of growth and gas production in carbohydrate-restricted (CR) de Man, Rogosa, and Sharpe (MRS) medium under anaerobic conditions with various combinations of ribose and galactose at 12, 23, and 37°C, with 23°C being the optimum growth temperature of Lb. wasatchii among the 3 temperatures studied. When Lb. wasatchii was grown on ribose (0.1, 0.5, and 1%), maximum specific growth rates (μmax) within each temperature were similar. When galactose was the only sugar, compared with ribose, μmax was 2 to 4 times lower. At all temperatures, the highest final cell densities (optical density at 640nm) of Lb. wasatchii were achieved in CR-MRS plus 1% ribose, 0.5% ribose and 0.5% galactose, or 1% ribose and 1% galactose. Similar μmax values and final cell densities were achieved when 50% of the ribose in CR-MRS was substituted with galactose. Such enhanced utilization of galactose in the presence of ribose to support bacterial growth has not previously been reported. It appears that Lb. wasatchii co-metabolizes ribose and galactose, utilizing ribose for energy and galactose for other functions such as cell wall biosynthesis. Co-utilization of both sugars could be an adaptation mechanism of Lb. wasatchii to the cheese environment to efficiently ferment available sugars for maximizing metabolism and growth. As expected, gas formation by the heterofermenter was observed only when galactose was present in the medium. Growth experiments with MRS plus 1.5% ribose at pH 5.2 or 6.5 with 0, 1, 2, 3, 4, or 5% NaCl revealed that Lb. wasatchii is able to grow under salt and pH conditions typical of Cheddar cheese (4 to 5% salt-in-moisture, pH ~5.2). Finally, we found that Lb. wasatchii cannot survive low-temperature, long-time pasteurization but survives high-temperature, short-time (HTST) laboratory pasteurization, under which a 4.5 log reduction occurred. The ability of Lb. wasatchii to survive HTST pasteurization and grow under cheese ripening conditions implies that the presence of this nonstarter lactic acid bacterium can be a serious contributor to gas formation and textural defects in Cheddar cheese.
AB - An obligatory heterofermentative lactic acid bacterium, Lactobacillus wasatchii sp. nov., isolated from gassy Cheddar cheese was studied for growth, gas formation, salt tolerance, and survival against pasteurization treatments at 63°C and 72°C. Initially, Lb. wasatchii was thought to use only ribose as a sugar source and we were interested in whether it could also utilize galactose. We conducted experiments to determine the rate and extent of growth and gas production in carbohydrate-restricted (CR) de Man, Rogosa, and Sharpe (MRS) medium under anaerobic conditions with various combinations of ribose and galactose at 12, 23, and 37°C, with 23°C being the optimum growth temperature of Lb. wasatchii among the 3 temperatures studied. When Lb. wasatchii was grown on ribose (0.1, 0.5, and 1%), maximum specific growth rates (μmax) within each temperature were similar. When galactose was the only sugar, compared with ribose, μmax was 2 to 4 times lower. At all temperatures, the highest final cell densities (optical density at 640nm) of Lb. wasatchii were achieved in CR-MRS plus 1% ribose, 0.5% ribose and 0.5% galactose, or 1% ribose and 1% galactose. Similar μmax values and final cell densities were achieved when 50% of the ribose in CR-MRS was substituted with galactose. Such enhanced utilization of galactose in the presence of ribose to support bacterial growth has not previously been reported. It appears that Lb. wasatchii co-metabolizes ribose and galactose, utilizing ribose for energy and galactose for other functions such as cell wall biosynthesis. Co-utilization of both sugars could be an adaptation mechanism of Lb. wasatchii to the cheese environment to efficiently ferment available sugars for maximizing metabolism and growth. As expected, gas formation by the heterofermenter was observed only when galactose was present in the medium. Growth experiments with MRS plus 1.5% ribose at pH 5.2 or 6.5 with 0, 1, 2, 3, 4, or 5% NaCl revealed that Lb. wasatchii is able to grow under salt and pH conditions typical of Cheddar cheese (4 to 5% salt-in-moisture, pH ~5.2). Finally, we found that Lb. wasatchii cannot survive low-temperature, long-time pasteurization but survives high-temperature, short-time (HTST) laboratory pasteurization, under which a 4.5 log reduction occurred. The ability of Lb. wasatchii to survive HTST pasteurization and grow under cheese ripening conditions implies that the presence of this nonstarter lactic acid bacterium can be a serious contributor to gas formation and textural defects in Cheddar cheese.
KW - Cofermentation
KW - Late blowing
KW - Nonstarter lactic acid bacteria
KW - Ribose
UR - http://www.scopus.com/inward/record.url?scp=84929508199&partnerID=8YFLogxK
U2 - 10.3168/jds.2014-9293
DO - 10.3168/jds.2014-9293
M3 - Article
C2 - 25795482
AN - SCOPUS:84929508199
SN - 0022-0302
VL - 98
SP - 3645
EP - 3654
JO - Journal of Dairy Science
JF - Journal of Dairy Science
IS - 6
ER -