Groundwave propagation modeling: Problem-matched analytical formulations and direct numerical techniques

Levent Sevgi*, Funda Akleman, Leopold B. Felsen

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıİnceleme makalesibilirkişi

72 Atıf (Scopus)

Özet

In this overview of groundwave propagation, dedicated to the memory of J. R. Wait, we address a particular class of propagation scenarios in the presence of surface terrain and atmospheric refractivity. Beginning with idealized analytically solvable models over a smooth spherical Earth, we trace the progression toward more "reality" through physics-based numerical algorithms, operating in the frequency and short-pulse time domain, which take advantage of computational resources. An extensive sequence of simulations for various terrains and atmospheric refractivities, as well as different source-receiver arrangements and operating frequencies, serves to calibrate these algorithms one against the other, and establishes the range of problem parameters for which each is more effective.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)55-75
Sayfa sayısı21
DergiIEEE Antennas and Propagation Magazine
Hacim44
Basın numarası1
DOI'lar
Yayın durumuYayınlandı - Şub 2002

Finansman

L. B. Felsen acknowledges partial support by ODDR&E under MURI Grants ARO DAAG55-97-1-0013 and AFOSR F49629-96-1-0028, by the Engineering Research Centers Program of the National Science Foundation under award number EEC-9986821, by Grant No:9900448 from the US-Israel Binational Science Foundation, Jerusalem, Israel, and Polytechnic University, Brooklyn, NY 11201, USA.

FinansörlerFinansör numarası
ODDR&E
Polytechnic University
US-Israel Binational Science Foundation
National Science FoundationEEC-9986821
Air Force Office of Scientific ResearchF49629-96-1-0028
Multidisciplinary University Research InitiativeARO DAAG55-97-1-0013

    Parmak izi

    Groundwave propagation modeling: Problem-matched analytical formulations and direct numerical techniques' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap