Greedy search for descriptive spatial face features

Caner Gacav, Burak Benligiray, Cihan Topal

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

5 Atıf (Scopus)

Özet

Facial expression recognition methods use a combination of geometric and appearance-based features. Spatial features are derived from displacements of facial landmarks, and carry geometric information. These features are either selected based on prior knowledge, or dimension-reduced from a large pool. In this study, we produce a large number of potential spatial features using two combinations of facial landmarks. Among these, we search for a descriptive subset of features using sequential forward selection. The chosen feature subset is used to classify facial expressions in the extended Cohn-Kanade dataset (CK+), and delivered 88.7% recognition accuracy without using any appearance-based features.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar1497-1501
Sayfa sayısı5
ISBN (Elektronik)9781509041176
DOI'lar
Yayın durumuYayınlandı - 16 Haz 2017
Harici olarak yayınlandıEvet
Etkinlik2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017 - New Orleans, United States
Süre: 5 Mar 20179 Mar 2017

Yayın serisi

AdıICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Basılı)1520-6149

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2017 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017
Ülke/BölgeUnited States
ŞehirNew Orleans
Periyot5/03/179/03/17

Bibliyografik not

Publisher Copyright:
© 2017 IEEE.

Parmak izi

Greedy search for descriptive spatial face features' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap