Global regulatory systems operating in bacilysin biosynthesis in Bacillus subtilis

Türkan Ebru Köroǧlu, Ismail Öǧülür, Seval Mutlu, Ayten Yazgan-Karataş*, Gülay Özcengiz

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

17 Atıf (Scopus)

Özet

In Bacillus subtilis, bacilysin is a nonribosomally synthesized dipeptide antibiotic composed of L-alanine and L-anticapsin. The biosynthesis of bacilysin depends on the bacABCDEywfG operon (bac operon)and the adjacent ywfH gene. To elucidate the effects of global regulatory genes on the expression of bac operon, we used the combination of lacZ fusion analysis and the gel mobility shift assays. The cell density-dependent transition state induction of the bac operon was clearly shown. The basal expression level of the bac operon as well as transition state induction of bac is directly ComA dependent. Three Phr peptides, PhrC, PhrF and PhrK, are required for full-level expression of ComA-dependent bac operon expression, but the most important role seemed to be played by PhrC in stimulating bac expression through a RapC-independent manner. Spo0A is another positive regulator which participates in the transition state induction of bac both directly by interacting with the bac promoter and indirectly by repressing abrB expression. AbrB and CodY proteins do not only directly repress the bac promoter, but they also mutually stimulate the transition state induction of bac indirectly, most likely by antagonizing their repressive effects without preventing each other's binding since both proteins can bind to the bac promoter simultaneously.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)144-155
Sayfa sayısı12
DergiJournal of Molecular Microbiology and Biotechnology
Hacim20
Basın numarası3
DOI'lar
Yayın durumuYayınlandı - Tem 2011

Parmak izi

Global regulatory systems operating in bacilysin biosynthesis in Bacillus subtilis' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap