TY - JOUR
T1 - Global geometry optimization of silicon clusters employing empirical potentials, density functionals, and ab initio calculations
AU - Tekin, Adem
AU - Hartke, Bernd
PY - 2005/12
Y1 - 2005/12
N2 - Sin clusters in the size range n = 4-30 have been investigated using a combination of global structure optimization methods with DFT and ab initio calculations. One of the central aims is to provide explanations for the structural transition from prolate to spherical outer shapes at about n = 25, as observed in ion mobility measurements. Firstly, several existing empirical potentials for silicon and a newly generated variant of one of them were better adapted to small silicon clusters, by global optimization of their parameters. The best resulting empirical potentials were then employed in global cluster structure optimizations. The most promising structures from this stage were relaxed further at the DFT level with the hybrid B3LYP functional. For the resulting structures, single point energies have been calculated at the LMP2 level with a reasonable medium-sized basis set, cc-pVTZ. These DFT and LMP2 calculations were also carried out for the best structures proposed in the literature, including the most recent ones, to obtain the currently best and most complete overall picture of the structural preferences of silicon clusters. In agreement with recent findings, results obtained at the DFT level do support the shape transition from prolate to spherical structures, beginning with Si26 (albeit not completely without problems). In stark contrast, at the LMP2 level, the dominance of spherical structures after the transition region could not be confirmed. Instead, just as below the transition region, prolate isomers are obtained as the lowest-energy structures for n ≤ 29. We conclude that higher (probably multireference) levels of theoretical treatments are needed before the puzzle of the silicon cluster shape transition at n = 25 can safely be considered as explained.
AB - Sin clusters in the size range n = 4-30 have been investigated using a combination of global structure optimization methods with DFT and ab initio calculations. One of the central aims is to provide explanations for the structural transition from prolate to spherical outer shapes at about n = 25, as observed in ion mobility measurements. Firstly, several existing empirical potentials for silicon and a newly generated variant of one of them were better adapted to small silicon clusters, by global optimization of their parameters. The best resulting empirical potentials were then employed in global cluster structure optimizations. The most promising structures from this stage were relaxed further at the DFT level with the hybrid B3LYP functional. For the resulting structures, single point energies have been calculated at the LMP2 level with a reasonable medium-sized basis set, cc-pVTZ. These DFT and LMP2 calculations were also carried out for the best structures proposed in the literature, including the most recent ones, to obtain the currently best and most complete overall picture of the structural preferences of silicon clusters. In agreement with recent findings, results obtained at the DFT level do support the shape transition from prolate to spherical structures, beginning with Si26 (albeit not completely without problems). In stark contrast, at the LMP2 level, the dominance of spherical structures after the transition region could not be confirmed. Instead, just as below the transition region, prolate isomers are obtained as the lowest-energy structures for n ≤ 29. We conclude that higher (probably multireference) levels of theoretical treatments are needed before the puzzle of the silicon cluster shape transition at n = 25 can safely be considered as explained.
KW - Empirical potentials
KW - Evolutionary algorithms
KW - Genetic algorithms
KW - Global optimization
KW - Shape transition
KW - Silicon clusters
UR - http://www.scopus.com/inward/record.url?scp=30644479699&partnerID=8YFLogxK
U2 - 10.1142/S0219633605002008
DO - 10.1142/S0219633605002008
M3 - Article
AN - SCOPUS:30644479699
SN - 0219-6336
VL - 4
SP - 1119
EP - 1151
JO - Journal of Theoretical and Computational Chemistry
JF - Journal of Theoretical and Computational Chemistry
IS - 4
ER -