Geometrical objects associated to a substructure

Fatma Özdemir*, Mircea Crĝşmǧreanu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

9 Atıf (Scopus)

Özet

Several geometric objects, namely global tensor fields of (1, 1)-type, linear connections and Riemannian metrics, associated to a given substructure on a splitting of tangent bundle, are studied. From the point of view of lifting to entire manifold, two types of polynomial substructures are distinguished according to the vanishing of not of the sum of the coefficients. Conditions of parallelism for the extended structure with respect to some remarkable linear connections are given in two forms, firstly in a global description and secondly using the decomposition in distributions. A generalization of both Hermitian and anti-Hermitian geometry is proposed.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)717-728
Sayfa sayısı12
DergiTurkish Journal of Mathematics
Hacim35
Basın numarası4
DOI'lar
Yayın durumuYayınlandı - 2011

Parmak izi

Geometrical objects associated to a substructure' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap