Genişletilmiş deeplabv3 mimarisi ile anlamsal bölütleme

Salih Can Yurtkulu, Yusuf Huseyin Sahin, Gozde Unal

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

123 Atıf (Scopus)

Özet

In this work, semantic segmentation has been dealt with convolutional neural networks (CNN) which is a widely used recent approach in the field of computer vision. In the experiments using Cityscapes dataset, the images are scaled by various rates and the CNN architecture named DeepLabv3 is trained with different hyperparameters using these images. After the training phase, the success rates of the trained models were compared. The most successful DeepLabv3 model has achieved a success rate of 78.83% on Cityscapes test set. Afterwards, an ensemble of two different DeepLabv3 models and the Extended DeepLabv3 model is tested. In test results, while the success rate remains nearly the same, an increase in classes such as road and sidewalk is observed.

Tercüme edilen katkı başlığıSemantic segmentation with extended DeepLabv3 architecture
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı27th Signal Processing and Communications Applications Conference, SIU 2019
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9781728119045
DOI'lar
Yayın durumuYayınlandı - Nis 2019
Etkinlik27th Signal Processing and Communications Applications Conference, SIU 2019 - Sivas, Turkey
Süre: 24 Nis 201926 Nis 2019

Yayın serisi

Adı27th Signal Processing and Communications Applications Conference, SIU 2019

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???27th Signal Processing and Communications Applications Conference, SIU 2019
Ülke/BölgeTurkey
ŞehirSivas
Periyot24/04/1926/04/19

Bibliyografik not

Publisher Copyright:
© 2019 IEEE.

Keywords

  • Convolutional neural networks (CNN)
  • Deep learning
  • Semantic segmentation

Parmak izi

Genişletilmiş deeplabv3 mimarisi ile anlamsal bölütleme' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap