Gene selection and classification approach for microarray data based on Random Forest Ranking and BBHA

Elnaz Pashaei, Mustafa Ozen, Nizamettin Aydin

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

32 Atıf (Scopus)

Özet

In this paper, a novel approach based on Binary Black Hole Algorithm (BBHA) and Random Forest Ranking (RFR) is proposed for gene selection and classification of microarray data. In this approach, RFR and BBHA are used to perform gene selection to remove irrelevant and redundant genes. Because of its ability in reducing noise, bias and variance errors Bagging with 10-fold cross validation is selected as a classifier. The result of RFR-BBHA-Bagging is compared to seven benchmark classification methods. Experimental results show that our proposed method by selecting the least number of informative genes can increase prediction accuracy of Bagging and outperforms the other classification methods.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı3rd IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2016
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar308-311
Sayfa sayısı4
ISBN (Elektronik)9781509024551
DOI'lar
Yayın durumuYayınlandı - 18 Nis 2016
Harici olarak yayınlandıEvet
Etkinlik3rd IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2016 - Las Vegas, United States
Süre: 24 Şub 201627 Şub 2016

Yayın serisi

Adı3rd IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2016

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???3rd IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2016
Ülke/BölgeUnited States
ŞehirLas Vegas
Periyot24/02/1627/02/16

Bibliyografik not

Publisher Copyright:
© 2016 IEEE.

Parmak izi

Gene selection and classification approach for microarray data based on Random Forest Ranking and BBHA' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap