Gene ontology-based annotation analysis and categorization of metabolic pathways

Ali Cakmak*, Mustafa Kirac, Marc R. Reynolds, Zehra M. Ozsoyoglu, Gultekin Ozsoyoglu

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

6 Atıf (Scopus)

Özet

Functional characterizations of pathways provide new opportunities in defining, understanding, and comparing existing biological pathways, and in helping discover new ones in different organisms. In this paper, we present and evaluate computational techniques for categorizing pathways, based upon the Gene Ontology (GO) annotations of enzymes within metabolic pathways. Our approach is to use the notion of functionality templates, GO-functional graphs of pathways. Pathway categorization is then achieved through learning models built on different characteristics of functionality templates. We have experimentally evaluated the accuracy of automated pathway categorization with respect to different learning models and their parameters. Using KEGG metabolic pathways, the pathway categorization tool reaches to 90% and higher accuracy.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı19th International Conference on Scientific and Statistical Database Management, SSDBM 2007
DOI'lar
Yayın durumuYayınlandı - 2007
Harici olarak yayınlandıEvet
Etkinlik19th International Conference on Scientific and Statistical Database Management, SSDBM 2007 - Banff, AB, Canada
Süre: 9 Tem 200711 Tem 2007

Yayın serisi

AdıProceedings of the International Conference on Scientific and Statistical Database Management, SSDBM
ISSN (Basılı)1099-3371

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???19th International Conference on Scientific and Statistical Database Management, SSDBM 2007
Ülke/BölgeCanada
ŞehirBanff, AB
Periyot9/07/0711/07/07

Parmak izi

Gene ontology-based annotation analysis and categorization of metabolic pathways' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap