Güç-Zaman Görüntülerini Kullanan Derin Evrişimsel Sinir Ağı Tabanlı Anten Tarama Tipi Sınıflandırma

Mustafa Talha Bayram, Halim Sinan Balaban, Behçet Uğur Töreyin

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

In Electronic Warfare (EW) systems, one of the most critical tasks is the accurate identification of radars in the environment. During the identification process, various uncertainties may arise. Antenna Scan Type (AST) serves as a significant parameter for resolving these ambiguities. In this study, a method based on Deep Convolutional Neural Networks (DCNN) with input as power-time images is proposed for the AST classification problem. Unlike previous studies in the literature, this method can operate independently of the number of pulses. The classification process was conducted using a DCNN-based model, and the results were shared with the readers Upon examination of the test results, it is observed that the proposed method yields successful outcomes for the AST classification problem.

Tercüme edilen katkı başlığıDeep Convolutional Neural Network Based Antenna Scan Type Classification using Power-Time Images
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9798350388961
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Mersin, Turkey
Süre: 15 May 202418 May 2024

Yayın serisi

Adı32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024
Ülke/BölgeTurkey
ŞehirMersin
Periyot15/05/2418/05/24

Bibliyografik not

Publisher Copyright:
© 2024 IEEE.

Keywords

  • antenna scan type classification
  • cogintive electronic warfare
  • convolutional neural network
  • electronic warfare

Parmak izi

Güç-Zaman Görüntülerini Kullanan Derin Evrişimsel Sinir Ağı Tabanlı Anten Tarama Tipi Sınıflandırma' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap