Fuzzy exponentially weighted moving average control chart for univariate data with a real case application

Sevil Şentürk, Nihal Erginel, Ihsan Kaya*, Cengiz Kahraman

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

61 Atıf (Scopus)

Özet

Statistical process control (SPC) is an approach to evaluate processes whether they are in statistical control or not. For this aim, control charts are generally used. Since sample data may include uncertainties coming from measurement systems and environmental conditions, fuzzy numbers and/or linguistic variables can be used to capture these uncertainties. In this paper, one of the most popular control charts, exponentially weighted moving average control chart (EWMA) for univariate data are developed under fuzzy environment. The fuzzy EWMA control charts (FEWMA) can be used for detecting small shifts in the data represented by fuzzy numbers. FEWMA decreases number of false decisions by providing flexibility on the control limits. The production process of plastic buttons is monitored with FEWMA in Turkey as a real application.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1-10
Sayfa sayısı10
DergiApplied Soft Computing
Hacim22
DOI'lar
Yayın durumuYayınlandı - Eyl 2014

Parmak izi

Fuzzy exponentially weighted moving average control chart for univariate data with a real case application' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap