Fully Unsupervised Binary Change Detection for Hyperspectral Images Using Laplacian Eigenmaps and Clustering

Gulsen Taskin, Alp Erturk

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

Due to the high dimensionality and complexity of hyperspectral images, change detection has proven to be a challenging study field in multi-temporal remote sensing. More sophisticated techniques are required to exploit the rich information and reduce the redundancy of spectral bands and, as a result, enhance the quality of change maps. This paper proposes a manifold-based approach for binary change detection in multitemporal hyperspectral images using Laplacian Eigenmaps. The multitemporal difference is represented in the eigenspace of the Laplacian matrix, and the resulting latent vectors are utilized to cluster the changed vs. unchanged regions using k-means clustering. The clusters obtained from the first two latent vectors are combined to obtain the binary change detection map. The proposed method is fully supervised and no thresholding is required. The proposed approach is validated on two real bitemporal hyperspectral datasets.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2022 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2022 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar37-40
Sayfa sayısı4
ISBN (Elektronik)9781665427951
DOI'lar
Yayın durumuYayınlandı - 2022
Etkinlik2022 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2022 - Virtual, Online, Turkey
Süre: 7 Mar 20229 Mar 2022

Yayın serisi

Adı2022 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2022 - Proceedings

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2022 IEEE Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2022
Ülke/BölgeTurkey
ŞehirVirtual, Online
Periyot7/03/229/03/22

Bibliyografik not

Publisher Copyright:
© 2022 IEEE.

Parmak izi

Fully Unsupervised Binary Change Detection for Hyperspectral Images Using Laplacian Eigenmaps and Clustering' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap