Fully automatic removal of chest tube figures from postero-anterior chest radiographs

C. Ahmet Mercan, M. Serdar Celebi

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

The presence of artificial objects in radiographic images is common. For example, 33% of chest radiographs contain catheters. Anomaly detection algorithms used to monitor disease progression should not be confused by artificial objects such as catheters, chest tubes, pacemakers or even cloths that might be present in chest radiographs. Hence, the detection and the removal of artificial objects via a preprocessing module are very useful for Computer Aided Diagnosis (CAD) research. In this paper, we propose a Convolutional Neural Network (CNN) architecture that works as a trainable filter that removes simulated chest tube figures from chest radiographs.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings of the 11th IASTED International Conference on Computer Graphics and Imaging, CGIM 2010
YayınlayanActa Press
Sayfalar298-302
Sayfa sayısı5
ISBN (Basılı)9780889868243
DOI'lar
Yayın durumuYayınlandı - 2010
Etkinlik11th IASTED International Conference on Computer Graphics and Imaging, CGIM 2010 - Innsbruck, Austria
Süre: 17 Şub 201019 Şub 2010

Yayın serisi

AdıProceedings of the 11th IASTED International Conference on Computer Graphics and Imaging, CGIM 2010

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???11th IASTED International Conference on Computer Graphics and Imaging, CGIM 2010
Ülke/BölgeAustria
ŞehirInnsbruck
Periyot17/02/1019/02/10

Parmak izi

Fully automatic removal of chest tube figures from postero-anterior chest radiographs' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap