From indoor paths to gender prediction with soft clustering

Onur Dogan*, Basar Oztaysi

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

4 Atıf (Scopus)

Özet

Customer-based practices enable benefits to organizations in a contentious business. Offering individualized proposals increase customer loyalty to be able to afloat. Understanding customers is a vital difficulty to perform personalized recommendations. As a demographic feature, gender information essentially cannot be captured by human tracking technologies. Hence, several procedures are improved to predict undiscovered gender information. In the research, the followed indoor paths in a shopping mall are used to predict customer genders using fuzzy c-medoids, one of the soft clustering techniques. A Levenshtein-based fuzzy classification methodology is proposed the followed paths as string data. Although some studies focused on gender prediction, no research has centered on path-oriented. The novelty of the investigation is to analyze customer path data for the gender classes.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)6529-6538
Sayfa sayısı10
DergiJournal of Intelligent and Fuzzy Systems
Hacim39
Basın numarası5
DOI'lar
Yayın durumuYayınlandı - 2020

Bibliyografik not

Publisher Copyright:
© 2020 - IOS Press and the authors. All rights reserved.

Parmak izi

From indoor paths to gender prediction with soft clustering' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap