Özet
This paper presents the first results of the ongoing development of new forest mapping methods for the Swedish national forest mapping case using Airborne Laser Scanning (ALS) data, utilizing the recent findings in machine learning (ML) and Artificial Intelligence (AI) techniques. We used Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) as ML models. In addition, Neural networks (NN) based approaches were utilized in this study. ALS derived features were used to estimate the stem volume (V), above-ground biomass (AGB), basal area (B), tree height (H), stem diameter (D), and forest stand age (A). XGBoost ML algorithm outperformed RF 1 % to 3 % in the R² metric. NN model performed similar to ML model, however it is superior in the estimation of V, AGB, and B parameters.
Orijinal dil | İngilizce |
---|---|
Ana bilgisayar yayını başlığı | IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings |
Yayınlayan | Institute of Electrical and Electronics Engineers Inc. |
Sayfalar | 2661-2664 |
Sayfa sayısı | 4 |
ISBN (Elektronik) | 9798350320107 |
DOI'lar | |
Yayın durumu | Yayınlandı - 2023 |
Etkinlik | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, United States Süre: 16 Tem 2023 → 21 Tem 2023 |
Yayın serisi
Adı | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|---|
Hacim | 2023-July |
???event.eventtypes.event.conference???
???event.eventtypes.event.conference??? | 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 |
---|---|
Ülke/Bölge | United States |
Şehir | Pasadena |
Periyot | 16/07/23 → 21/07/23 |
Bibliyografik not
Publisher Copyright:© 2023 IEEE.