Forecasting commercial real estate indicators under COVID-19 by adopting human activity using social big data

Maral Taşcılar*, Kerem Yavuz Arslanlı

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

3 Atıf (Scopus)

Özet

Dependence of the real estate sector on human activity has been unveiled during the COVID-19 pandemic. In addition, it is assumed that trends emitted from the location-based social networks (LBSNs) successfully reflect human activities, hence commercial property trends. This study examined the use of social media to forecast commercial real estate figures during COVID-19 in Istanbul and determined the potential of social media data for forecasting the future rent/price levels of retail properties. Instagram and Twitter, two major LBSN platforms, were selected as social media data sources. First, 17 million geo-tagged Instagram posts and 230 thousand geo-referenced tweets were collected. Then, the data sets were superposed on COVID-19 key points in Turkey and the relationships observed. Finally, the data sets were combined with the commercial real estate data to monitor increases in the accuracy of rent and price predictions. Beşiktaş District of Istanbul was chosen as the pilot region to test the methodology. The results showed that the LBSN-supported models outperformed baseline models most of the time for price predictions and occasionally for rent predictions. Also, both Instagram and Twitter were found essential to the study and could not be omitted. This study demonstrates the significance and leveraging potential of applying human activities to the decision-making processes of the commercial real estate sector under COVID-19 conditions. This is the first study to adopt LBSN data to forecast commercial property prices.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1111-1132
Sayfa sayısı22
DergiAsia-Pacific Journal of Regional Science
Hacim6
Basın numarası3
DOI'lar
Yayın durumuYayınlandı - Eki 2022

Bibliyografik not

Publisher Copyright:
© 2022, The Japan Section of the Regional Science Association International.

Finansman

This work was supported by Research Fund of the Istanbul Technical University. Project Number: 43886.

FinansörlerFinansör numarası
Istanbul Teknik Üniversitesi43886

    Parmak izi

    Forecasting commercial real estate indicators under COVID-19 by adopting human activity using social big data' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap