Feature selection by high dimensional model representation and its application to remote sensing

Gülşen Taşkin Kaya*, Hüseyin Kaya, Okan K. Ersoy

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Konferansa katkıYazıbilirkişi

4 Atıf (Scopus)

Özet

As the number of feature increases, classification accuracy may decrease. Additionally, computational overload increases with a large number of features. For effective classification performance and shortened the training time, the redundant features should be eliminated before the classification process. In this paper, a new HDMR-based feature selection approach is presented, sorting the features with respect to their sensitivity coefficient calculated by HDMR sensitivity analysis. With the experiments conducted, the HDMR-based feature selection approach is competitive with sequential forward feature selection method and faster in terms of computational time, especially when dealing with datasets having a large number of features.

Orijinal dilİngilizce
Sayfalar4938-4941
Sayfa sayısı4
DOI'lar
Yayın durumuYayınlandı - 2012
Etkinlik2012 32nd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2012 - Munich, Germany
Süre: 22 Tem 201227 Tem 2012

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???2012 32nd IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2012
Ülke/BölgeGermany
ŞehirMunich
Periyot22/07/1227/07/12

Parmak izi

Feature selection by high dimensional model representation and its application to remote sensing' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap