Fast Trajectory Optimization with Chance Constraints

Runqi Chai*, Kaiyuan Chen, Lingguo Cui, Senchun Chai, Gokhan Inalhan, Antonios Tsourdos

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Bölümbilirkişi

Özet

This chapter investigates the optimal flight of aero-assisted reentry vehicles during the atmospheric entry flight phase while taking into account both deterministic and control chance constraints. We construct a chance-constrained optimal control model in order to depict the mission profile. However, standard numerical trajectory planning methods cannot be directly used to solve the problem due to the existence of probabilistic constraints (chance constraints). Therefore, to make the optimal control model solvable for standard trajectory optimization algorithms, we introduce an approximation-based strategy such that the probabilistic constraint is replaced by deterministic version. To achieve improved computational performance, we provide an alternative optimal control formulation that incorporates the convex-relaxed technique. This involves convexifying the vehicle nonlinear dynamics and constraints, as well as incorporating a convex probabilistic constraint handling approach. The effectiveness of the two chance-constrained optimization strategies and their corresponding probabilistic constraint handling methods is validated through numerical simulations.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıSpringer Aerospace Technology
YayınlayanSpringer Science and Business Media Deutschland GmbH
Sayfalar107-130
Sayfa sayısı24
DOI'lar
Yayın durumuYayınlandı - 2023
Harici olarak yayınlandıEvet

Yayın serisi

AdıSpringer Aerospace Technology
HacimPart F1477
ISSN (Basılı)1869-1730
ISSN (Elektronik)1869-1749

Bibliyografik not

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

Parmak izi

Fast Trajectory Optimization with Chance Constraints' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap