Fast segmentation algorithms for long hydrometeorological time series

Hafzullah Aksoy*, Abdullah Gedikli, N. Erdem Unal, Athanasios Kehagias

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

30 Atıf (Scopus)

Özet

A time series with natural or artificially created inhomogeneities can be segmented into parts with different statistical characteristics. In this study, three algorithms are presented for time series segmentation; the first is based on dynamic programming and the second and the third - the latter being an improved version of the former - are based on the branch-and-bound approach. The algorithms divide the time series into segments using the first order statistical moment (average). Tested on real world time series of several hundred or even over a thousand terms the algorithms perform segmentation satisfactorily and fast.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)4600-4608
Sayfa sayısı9
DergiHydrological Processes
Hacim22
Basın numarası23
DOI'lar
Yayın durumuYayınlandı - 15 Kas 2008

Parmak izi

Fast segmentation algorithms for long hydrometeorological time series' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap