Fast-ICA Based Lane Detection Method for Autonomous Vehicles

Hasibe Busra Dogru, Aydin Tarik Zengin*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

Lane detection is an important process in autonomous vehicle systems. Noise in the image, such as object shadows and terminating lane lines, make lane detection difficult. This study proposes a Convolutional Neural Network architecture with a dimension reduction method that has not been used before in lane detection. The proposed method has been tested with the open-source TuSimple dataset. The results showed that the proposed Fast-Independent Component Analysis based model training improved performance in lane detection and reduced the mean percent error by 42.2%.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings of the 2022 26th International Conference Electronics, ELECTRONICS 2022
EditörlerDarius Andriukaitis, Algimantas Valinevicius, Tomyslav Sledevic
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9781665483216
DOI'lar
Yayın durumuYayınlandı - 2022
Harici olarak yayınlandıEvet
Etkinlik26th International Conference Electronics, ELECTRONICS 2022 - Palanga, Lithuania
Süre: 13 Haz 202215 Haz 2022

Yayın serisi

AdıProceedings of the 2022 26th International Conference Electronics, ELECTRONICS 2022

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???26th International Conference Electronics, ELECTRONICS 2022
Ülke/BölgeLithuania
ŞehirPalanga
Periyot13/06/2215/06/22

Bibliyografik not

Publisher Copyright:
© 2022 IEEE.

Parmak izi

Fast-ICA Based Lane Detection Method for Autonomous Vehicles' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap