Farkli Kullanici-Ürun Etkileşim Türlerini Kullanarak Özyineli Sinir Agilari ile Ürün Tahminlemesi

Fulya Celebi Sarioglu, Yusuf Yaslan

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

1 Atıf (Scopus)

Özet

This paper deals with the session-based recommendations of different types of user-item interactions. Every user session includes sequences of item interactions such as item viewing, putting into basket and purchasing. Sequences that are constituted short events make the recommendation problems more challenging. Therefore, we applied a powerful state of the art Recurrent Neural Networks (RNN) with Gated Recurrent Unit (GRU) to train data and to predict the next item to be purchased. In the proposed method, Node2Vec representations of items are obtained using the probabilities of different useritem interactions. These representations are used as the initial weights of the GRU inputs. Experimental results are obtained on nearly one million sessions that are constituted by view, basket and purchase interactions which were collected from a Turkish e-commerce website. Experiments that are evaluated by using Mean Reciprocal Rank (MRR) and Recall metrics show that the proposed method performs 63% Recall and 41% MRR results.

Tercüme edilen katkı başlığıItem prediction with RNN using different types of user-item interactions
Orijinal dilTürkçe
Ana bilgisayar yayını başlığı27th Signal Processing and Communications Applications Conference, SIU 2019
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
ISBN (Elektronik)9781728119045
DOI'lar
Yayın durumuYayınlandı - Nis 2019
Etkinlik27th Signal Processing and Communications Applications Conference, SIU 2019 - Sivas, Turkey
Süre: 24 Nis 201926 Nis 2019

Yayın serisi

Adı27th Signal Processing and Communications Applications Conference, SIU 2019

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???27th Signal Processing and Communications Applications Conference, SIU 2019
Ülke/BölgeTurkey
ŞehirSivas
Periyot24/04/1926/04/19

Bibliyografik not

Publisher Copyright:
© 2019 IEEE.

Keywords

  • Deep Learning
  • Recommender Systems
  • RNN

Parmak izi

Farkli Kullanici-Ürun Etkileşim Türlerini Kullanarak Özyineli Sinir Agilari ile Ürün Tahminlemesi' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap