Fall detection using single-tree complex wavelet transform

Ahmet Yazar*, Furkan Keskin, B. Ugur Töreyin, A. Enis Çetin

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

43 Atıf (Scopus)

Özet

The goal of Ambient Assisted Living (AAL) research is to improve the quality of life of the elderly and handicapped people and help them maintain an independent lifestyle with the use of sensors, signal processing and telecommunications infrastructure. Unusual human activity detection such as fall detection has important applications. In this paper, a fall detection algorithm for a low cost AAL system using vibration and passive infrared (PIR) sensors is proposed. The single-tree complex wavelet transform (ST-CWT) is used for feature extraction from vibration sensor signal. The proposed feature extraction scheme is compared to discrete Fourier transform and mel-frequency cepstrum coefficients based feature extraction methods. Vibration signal features are classified into "fall" and "ordinary activity" classes using Euclidean distance, Mahalanobis distance, and support vector machine (SVM) classifiers, and they are compared to each other. The PIR sensor is used for the detection of a moving person in a region of interest. The proposed system works in real-time on a standard personal computer.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1945-1952
Sayfa sayısı8
DergiPattern Recognition Letters
Hacim34
Basın numarası15
DOI'lar
Yayın durumuYayınlandı - 2013
Harici olarak yayınlandıEvet

Finansman

This work is supported in part by the Turk Telekom with Grant No. 3015-03 . Authors are grateful to Karel Electronics Corporation for granting a GS-20DX vibration sensor.

FinansörlerFinansör numarası
Turk Telekom3015-03

    Parmak izi

    Fall detection using single-tree complex wavelet transform' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

    Alıntı Yap