Extensions of Ordinary Fuzzy Sets: A Comparative Literature Review

Cengiz Kahraman*, Basar Oztaysi, Irem Otay, Sezi Cevik Onar

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

7 Atıf (Scopus)

Özet

Fuzzy sets extensions have been often used in the modeling of problems including vagueness and impreciseness in order to better define the membership functions together with the hesitancy of decision makers. More than 20 different extensions of ordinary fuzzy sets have appeared in the literature after the introductions of ordinary fuzzy sets by Zadeh (1965). These sets involve interval-type fuzzy sets, type-2 fuzzy sets, hesitant fuzzy sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets, q-rung orthopair fuzzy sets, spherical fuzzy sets, picture fuzzy sets, fermatean fuzzy sets, etc. Mainly, these extensions can be divided into two classes: extensions with two independent membership parameters and extensions with three independent membership parameters. In this paper, we briefly classify these extensions and present some comparative graphical illustrations.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıIntelligent and Fuzzy Techniques
Ana bilgisayar yayını alt yazısıSmart and Innovative Solutions - Proceedings of the INFUS 2020 Conference
EditörlerCengiz Kahraman, Sezi Cevik Onar, Basar Oztaysi, Irem Ucal Sari, Selcuk Cebi, A. Cagri Tolga
YayınlayanSpringer
Sayfalar1655-1665
Sayfa sayısı11
ISBN (Basılı)9783030511555
DOI'lar
Yayın durumuYayınlandı - 2021
EtkinlikInternational Conference on Intelligent and Fuzzy Systems, INFUS 2020 - Istanbul, Turkey
Süre: 21 Tem 202023 Tem 2020

Yayın serisi

AdıAdvances in Intelligent Systems and Computing
Hacim1197 AISC
ISSN (Basılı)2194-5357
ISSN (Elektronik)2194-5365

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???International Conference on Intelligent and Fuzzy Systems, INFUS 2020
Ülke/BölgeTurkey
ŞehirIstanbul
Periyot21/07/2023/07/20

Bibliyografik not

Publisher Copyright:
© 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.

Parmak izi

Extensions of Ordinary Fuzzy Sets: A Comparative Literature Review' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap