Extending out-of-sample manifold learning via meta-modelling techniques

Gulsen Taskin*, Melba Crawford

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

4 Atıf (Scopus)

Özet

Unsupervised manifold learning has become accepted as an important tool for reducing dimensionality of a data set by finding its meaningful low dimensional representation lying on an unknown nonlinear subspace. Most manifold learning methods only embed an existing data set, but do not provide an explicit mapping function for novel out-of-sample data, thereby potentially resulting in an ineffective tool for classification purposes. To address this issue, out-of-sample extension methods have been introduced to generalize an existing embedding to new samples. In this work, a meta-modelling method called High Dimensional Model Representation (HDMR) is firstly implemented as a nonlinear multivariate regression for the out-of-sample problem for non-parametric unsupervised manifold learning algorithms. Several experiments show that the proposed method outperforms several state-of-the-art out-of-sample extension methods in terms of generalization to new samples for classification experiments on two remote sensing hyperspectral data sets.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2017 IEEE International Geoscience and Remote Sensing Symposium
Ana bilgisayar yayını alt yazısıInternational Cooperation for Global Awareness, IGARSS 2017 - Proceedings
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar562-565
Sayfa sayısı4
ISBN (Elektronik)9781509049516
DOI'lar
Yayın durumuYayınlandı - 1 Ara 2017
Etkinlik37th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017 - Fort Worth, United States
Süre: 23 Tem 201728 Tem 2017

Yayın serisi

AdıInternational Geoscience and Remote Sensing Symposium (IGARSS)
Hacim2017-July

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???37th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017
Ülke/BölgeUnited States
ŞehirFort Worth
Periyot23/07/1728/07/17

Bibliyografik not

Publisher Copyright:
© 2017 IEEE.

Parmak izi

Extending out-of-sample manifold learning via meta-modelling techniques' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap