Exact solutions of the nonlinear fin problem with temperature-dependent coefficients

Özlem Orhan, Teoman Özer*

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

Özet

The analytical solutions of a nonlinear fin problem with variable thermal conductivity and heat transfer coefficients are investigated by considering theory of Lie groups and its relations with l-symmetries and Prelle-Singer procedure. Additionally, the classification problem with respect to different choices of thermal conductivity and heat transfer coefficient functions is carried out. In addition, Lagrangian and Hamiltonian forms related to the problem are investigated. Furthermore, the exact analytical solutions of boundary-value problems for the nonlinear fin equation are obtained and represented graphically.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)150-170
Sayfa sayısı21
DergiJournal of Nonlinear Mathematical Physics
Hacim28
Basın numarası1
DOI'lar
Yayın durumuYayınlandı - Mar 2021

Bibliyografik not

Publisher Copyright:
© 2020 The Authors. Published by Atlantis Press B.V.

Parmak izi

Exact solutions of the nonlinear fin problem with temperature-dependent coefficients' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap