Evolutionary algorithm with modifications in the reproduction phase

I. Eksin*, O. K. Erol

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

11 Atıf (Scopus)

Özet

All traditional evolutionary algorithms are heuristic population-based search procedures that incorporate random variation and selection. The number of calculations in these algorithms is generally proportional to population size. Classical genetic algorithms (GAs), for instance, require the calculation of the fitness values of every individual in the population. A new evolutionary algorithm that combines two basic operators of GAs: namely, selection and crossover are proposed. The new operator is applied to two randomly selected individuals from the existing population. It is shown that the number of calculations is reduced greatly compared to classical GAs, while performance is enhanced on the functions studied. Moreover, simulation studies indicate that the new algorithm can produce a performance comparable with he more intelligent and hybrid evolutionary techniques given in the related literature.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)75-80
Sayfa sayısı6
DergiIEE Proceedings: Software
Hacim148
Basın numarası2
DOI'lar
Yayın durumuYayınlandı - Nis 2001

Parmak izi

Evolutionary algorithm with modifications in the reproduction phase' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap