Evolution equations for nonlinear waves in a tapered elastic tube filled with a viscous fluid

Ilkay Bakirtaş*, Nalan Antar

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: ???type-name???Makalebilirkişi

7 Atıf (Scopus)

Özet

In this work, employing the reductive perturbation method and treating the arteries as a tapered, thin walled, long and circularly conical prestressed elastic tube, the propagation of weakly nonlinear waves is investigated in such a fluid-filled elastic tube. By considering the blood as an incompressible viscous fluid, depending on the viscosity and perturbation parameters we obtained various evolution equations as the extended Korteweg-de Vries (KdV), extended KdV Burgers and extended perturbed KdV equations. Progressive wave solutions to these evolution equations are obtained and it is observed that the wave speeds increase with the distance for negative tapering while they decrease for positive tapering.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)1163-1176
Sayfa sayısı14
DergiInternational Journal of Engineering Science
Hacim41
Basın numarası11
DOI'lar
Yayın durumuYayınlandı - Tem 2003

Parmak izi

Evolution equations for nonlinear waves in a tapered elastic tube filled with a viscous fluid' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap