TY - JOUR
T1 - Evaluating the microbial growth kinetics and artificial gastric digestion survival of a novel Pichia kudriavzevii FOL-04
AU - Gumustop, İsmail
AU - Ortakci, Fatih
N1 - Publisher Copyright:
© 2022, Field Crops Central Research Institute. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Present study aims to explore Pichia kudriavzevii FOL-04 (FOL-04)’s: i) survival against artificial gastric juice (AGJ) and artificial bile juice (ABJ), ii) growth kinetics in shake flask (SF) and fed-batch trials (FBT). Survival of FOL-04 as measured by relative cell density (RCD) against AGJ and ABJ was screened at four different pH-levels (control, 3, 2, 1.5) and ox-bile concentrations (control, 0.2%, 1%, 2%), respectively. Growth kinetics was calculated by periodic measurement of OD600 in SF (225 rpm, 30°C) or in FBT using exponential feeding regimen where pH, dissolved-oxygen and temperature were controlled at 5.5, 21%, and 30°C, respectively. The doubling-time, maximum specific growth rate, and final cell densities achieved for SF and FBT were 81.7min, 1.67, 11.79 and 170.4 min, 4.75, 37.95, respectively. RCDs calculated were similar for pH=3 and control vs both were significantly higher(p<0.05) than pH=1.5 and 2 with the latter two pH-levels were not significantly different(p>0.05). RCDs were similar across control, 0.2%, and 1% ox-bile levels(p>0.05). However, 2% ox-bile yielded significantly lower RCD (p<0.05) compared to all except 1%. FOL-04 is a potential probiotic candidate showing robustness against AGJ and ABJ and remarkable biomass increase was achieved when grown under FBT which could pave the way for developing a yeast-based probiotic using this strain.
AB - Present study aims to explore Pichia kudriavzevii FOL-04 (FOL-04)’s: i) survival against artificial gastric juice (AGJ) and artificial bile juice (ABJ), ii) growth kinetics in shake flask (SF) and fed-batch trials (FBT). Survival of FOL-04 as measured by relative cell density (RCD) against AGJ and ABJ was screened at four different pH-levels (control, 3, 2, 1.5) and ox-bile concentrations (control, 0.2%, 1%, 2%), respectively. Growth kinetics was calculated by periodic measurement of OD600 in SF (225 rpm, 30°C) or in FBT using exponential feeding regimen where pH, dissolved-oxygen and temperature were controlled at 5.5, 21%, and 30°C, respectively. The doubling-time, maximum specific growth rate, and final cell densities achieved for SF and FBT were 81.7min, 1.67, 11.79 and 170.4 min, 4.75, 37.95, respectively. RCDs calculated were similar for pH=3 and control vs both were significantly higher(p<0.05) than pH=1.5 and 2 with the latter two pH-levels were not significantly different(p>0.05). RCDs were similar across control, 0.2%, and 1% ox-bile levels(p>0.05). However, 2% ox-bile yielded significantly lower RCD (p<0.05) compared to all except 1%. FOL-04 is a potential probiotic candidate showing robustness against AGJ and ABJ and remarkable biomass increase was achieved when grown under FBT which could pave the way for developing a yeast-based probiotic using this strain.
KW - Acid Bile
KW - Bioreactor
KW - Growth kinetics
KW - Pichia kudriavzevii FOL-04
KW - Probiotic
UR - http://www.scopus.com/inward/record.url?scp=85167436719&partnerID=8YFLogxK
U2 - 10.38042/biotechstudies.1103767
DO - 10.38042/biotechstudies.1103767
M3 - Article
AN - SCOPUS:85167436719
SN - 2687-3761
VL - 31
SP - 28
EP - 35
JO - Biotech Studies
JF - Biotech Studies
IS - 1
ER -