Estimation of flexural capacity of quadrilateral FRP-confined RC columns using combined artificial neural network

Mehmet Alpaslan Köroĝlu, Murat Ceylan, Musa Hakan Arslan*, Alper Ilki

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

28 Atıf (Scopus)

Özet

This study presents the application of combined artificial neural networks (CANNs) for the flexural capacity estimation of quadrilateral fiber-reinforced polymer (FRP) confined reinforced concrete (RC) columns. A database on quadrilateral FRP confined RC columns subjected to axial load and moment was obtained from experimental studies in the literature; CANN models were built, trained and tested. Then the flexural capacities of quadrilateral FRP confined RC columns were determined using the developed CANN model. Single and combined ANN was used for the first time in the literature for the estimation of flexural capacities of non-circular fiber-reinforced polymer (FRP) confined reinforced concrete (RC) columns. The accuracies of the proposed ANN and CANN models were more satisfactory as compared to the existing conventional approaches in the literature. Moreover, the proposed CANN models' results had lower prediction error than those of the single ANN model.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)23-32
Sayfa sayısı10
DergiEngineering Structures
Hacim42
DOI'lar
Yayın durumuYayınlandı - Eyl 2012

Parmak izi

Estimation of flexural capacity of quadrilateral FRP-confined RC columns using combined artificial neural network' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap