TY - JOUR
T1 - Environmental impacts arising from the production of two surface coating formulations
AU - Sezginer, Ilayda
AU - Atilgan Turkmen, Burcin
AU - Germirli Babuna, Fatos
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2022/8
Y1 - 2022/8
N2 - The objective of this study is to comparatively appraise the environmental impacts of formulating two metal surface coating chemicals (Product A and B) that can substitute each other via life cycle assessment methodology. The effect of using various energy sources during manufacturing is investigated. The functional unit is defined as 1000 kg product. A cradle-to-gate approach is adopted as system boundaries. The explored environmental impact categories are as follows: global warming (GWP), abiotic depletion (ADP fossils and elements), acidification (AP), eutrophication (EP), freshwater aquatic ecotoxicity (FAETP), human toxicity (HTP), ozone depletion (ODP), photochemical ozone creation (POCP) and terrestrial ecotoxicity (TETP) potentials. GWP of Product A is 7% higher than that of Product B. For all the other impact categories apart from GWP, Product A yields lower results. FAETP, ADP elements, ODP, EP, HTP, POCP, AP, ADP fossil and TETP of Product B are 116%, 72%, 55%, 49%, 38%, 33%, 26%, 26% and 18% higher than Product A, respectively. Noteworthy reductions on environmental impacts generated by energy consumption are obtained for almost all of the impact categories apart from ADP elements, when photovoltaic cells are used instead of grid electricity. Similarly, reductions in all environmental impact categories except for ADP elements are found in the case of using wind turbines instead of the grid. More than 95% decreases are observed for ADP fossil, AP, EP, GWP, ODP and POCP by getting energy from wind instead of grid. The most environmentally friendly energy alternative is addressed as wind energy except for ADP elements. It is recommended to perform LCA studies related to zinc phosphating chemicals, as very limited studies can be found. These results can be used to guide the environmental policies related to the chemical, metal and coating sectors. Graphical abstract: [Figure not available: see fulltext.].
AB - The objective of this study is to comparatively appraise the environmental impacts of formulating two metal surface coating chemicals (Product A and B) that can substitute each other via life cycle assessment methodology. The effect of using various energy sources during manufacturing is investigated. The functional unit is defined as 1000 kg product. A cradle-to-gate approach is adopted as system boundaries. The explored environmental impact categories are as follows: global warming (GWP), abiotic depletion (ADP fossils and elements), acidification (AP), eutrophication (EP), freshwater aquatic ecotoxicity (FAETP), human toxicity (HTP), ozone depletion (ODP), photochemical ozone creation (POCP) and terrestrial ecotoxicity (TETP) potentials. GWP of Product A is 7% higher than that of Product B. For all the other impact categories apart from GWP, Product A yields lower results. FAETP, ADP elements, ODP, EP, HTP, POCP, AP, ADP fossil and TETP of Product B are 116%, 72%, 55%, 49%, 38%, 33%, 26%, 26% and 18% higher than Product A, respectively. Noteworthy reductions on environmental impacts generated by energy consumption are obtained for almost all of the impact categories apart from ADP elements, when photovoltaic cells are used instead of grid electricity. Similarly, reductions in all environmental impact categories except for ADP elements are found in the case of using wind turbines instead of the grid. More than 95% decreases are observed for ADP fossil, AP, EP, GWP, ODP and POCP by getting energy from wind instead of grid. The most environmentally friendly energy alternative is addressed as wind energy except for ADP elements. It is recommended to perform LCA studies related to zinc phosphating chemicals, as very limited studies can be found. These results can be used to guide the environmental policies related to the chemical, metal and coating sectors. Graphical abstract: [Figure not available: see fulltext.].
KW - Chemicals
KW - Environmental impacts
KW - Formulation
KW - Life cycle assessment
KW - Metal coating
UR - http://www.scopus.com/inward/record.url?scp=85125773501&partnerID=8YFLogxK
U2 - 10.1007/s10098-022-02288-z
DO - 10.1007/s10098-022-02288-z
M3 - Article
AN - SCOPUS:85125773501
SN - 1618-954X
VL - 24
SP - 1811
EP - 1822
JO - Clean Technologies and Environmental Policy
JF - Clean Technologies and Environmental Policy
IS - 6
ER -