Enhancing Object Detection in Aerial Images Using Transformer-Based Super-Resolution

Aslan Ahmet Haykir, Ilkay Öksuz

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

Özet

Enhancing the resolution of aerial images is an important task in military and scientific applications. Sufficient image quality is essential for robust object detection. In this paper, we propose using transformer-based super-resolution techniques to increase object detection accuracy in aerial im-agery, specifically focusing on the Dataset for Object Detection in Aerial Images (DOTA) dataset. We utilize the Hybrid Attention Transformer for Image Restoration (HAT-L) architecture as a transformer model for super-resolution and analyze its influence on object detection performance, especially using the HAT- L model pre-trained on the ImageNet dataset. We integrate the YOLOv8 (You Only Look Once) OBB model, pre-trained on the DOTA dataset, to assess the effectiveness of our approach in enhancing object detection capabilities. Our results highlight the benefits of combining the HAT-L archi-tecture for super-resolution with the YOLOv8 OBB model for object detection tasks. We achieve a Peak Signal-to-Noise Ratio (PSNR) of 37.847 and a Structural Similarity Index (SSIM) value of 0.903 for super-resolved images on the DOTA validation set using the HAT- L architecture. Additionally, our integrated approach yields a mean Average Precision (mAP) of 0.809 at IOU 0.5 and 0.656 at IOU 0.5-0.95 using the YOLOv8x OBB model on the super-resolved images. Our findings contribute valuable insights into the effectiveness of transformer models for image enhancement and object detection tasks in remote sensing applications.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıUBMK 2024 - Proceedings
Ana bilgisayar yayını alt yazısı9th International Conference on Computer Science and Engineering
EditörlerEsref Adali
YayınlayanInstitute of Electrical and Electronics Engineers Inc.
Sayfalar966-971
Sayfa sayısı6
ISBN (Elektronik)9798350365887
DOI'lar
Yayın durumuYayınlandı - 2024
Etkinlik9th International Conference on Computer Science and Engineering, UBMK 2024 - Antalya, Turkey
Süre: 26 Eki 202428 Eki 2024

Yayın serisi

AdıUBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???9th International Conference on Computer Science and Engineering, UBMK 2024
Ülke/BölgeTurkey
ŞehirAntalya
Periyot26/10/2428/10/24

Bibliyografik not

Publisher Copyright:
© 2024 IEEE.

Parmak izi

Enhancing Object Detection in Aerial Images Using Transformer-Based Super-Resolution' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap