Enhanced radar imaging via sparsity regularized 2D linear prediction

I. Erer, K. Sarikaya, H. Bozkurt

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

8 Atıf (Scopus)

Özet

ISAR imaging based on the 2D linear prediction uses the l2 norm minimization of the prediction error to obtain 2D autoregressive (AR) model coefficients. However, this approach causes many spurious peaks in the resulting image. In this study, a new ISAR imaging method based on the 2D sparse AR modeling of backscattered data is proposed. The 2D model coefficients are obtained by the l2- norm minimization of the prediction error penalized by the l1 norm of the prediction coefficient vector. The resulting 2D prediction coefficient vector is sparse, and its use yields radar images with reduced side lobes compared to the classical l2- norm minimization.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığı2014 Proceedings of the 22nd European Signal Processing Conference, EUSIPCO 2014
YayınlayanEuropean Signal Processing Conference, EUSIPCO
Sayfalar1751-1755
Sayfa sayısı5
ISBN (Elektronik)9780992862619
Yayın durumuYayınlandı - 10 Kas 2014
Etkinlik22nd European Signal Processing Conference, EUSIPCO 2014 - Lisbon, Portugal
Süre: 1 Eyl 20145 Eyl 2014

Yayın serisi

AdıEuropean Signal Processing Conference
ISSN (Basılı)2219-5491

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???22nd European Signal Processing Conference, EUSIPCO 2014
Ülke/BölgePortugal
ŞehirLisbon
Periyot1/09/145/09/14

Bibliyografik not

Publisher Copyright:
© 2014 EURASIP.

Parmak izi

Enhanced radar imaging via sparsity regularized 2D linear prediction' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap