TY - JOUR
T1 - Energy Management of P2 Hybrid Electric Vehicle Based on Event-Triggered Nonlinear Model Predictive Control and Deep Q Network
AU - Haspolat, Cuneyt
AU - Yalcin, Yaprak
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/6
Y1 - 2023/6
N2 - Hybrid electric vehicles (HEVs) are used as a bridge during the transition to battery electric vehicles (BEVs) and to make energy consumption more efficient. The main problem in improving the efficiency of HEV energy consumption is torque management. In this study, a novel approach based on a nonlinear model predictive controller to solve the reference tracking and torque distribution problem is proposed. That is to say, in order to increase the efficiency of torque distribution, the weights of nonlinear model predictive control (NMPC) are trained with a Deep Q Network (DQN), and an event-triggered mechanism is designed with DQN to reduce the computational cost of MPC. The considered torque distribution problem varies according to the type and structure of the HEV. In this study, a parallel type 2 hybrid electric vehicle (P2 HEV) is considered and modeled via publicly shared passenger vehicle data of the engine, motor, high-voltage battery, transmission, clutch, differential, and wheel characteristics. NMPC is formulated so that the torque values remain within the physical limits of the engine, and the battery also operates at its physical limits. Namely, it is guaranteed that the battery works according to a certain state of charge (SOC) window and current limits. The state of health (SOH) of the battery is also considered in the optimization. The motor and engine efficiencies increase by 3.61% and 2.86%, respectively, with the proposed control structure, while the computational cost is reduced by 52.01% when utilizing the proposed event-triggering mechanism in the NMPC controller.
AB - Hybrid electric vehicles (HEVs) are used as a bridge during the transition to battery electric vehicles (BEVs) and to make energy consumption more efficient. The main problem in improving the efficiency of HEV energy consumption is torque management. In this study, a novel approach based on a nonlinear model predictive controller to solve the reference tracking and torque distribution problem is proposed. That is to say, in order to increase the efficiency of torque distribution, the weights of nonlinear model predictive control (NMPC) are trained with a Deep Q Network (DQN), and an event-triggered mechanism is designed with DQN to reduce the computational cost of MPC. The considered torque distribution problem varies according to the type and structure of the HEV. In this study, a parallel type 2 hybrid electric vehicle (P2 HEV) is considered and modeled via publicly shared passenger vehicle data of the engine, motor, high-voltage battery, transmission, clutch, differential, and wheel characteristics. NMPC is formulated so that the torque values remain within the physical limits of the engine, and the battery also operates at its physical limits. Namely, it is guaranteed that the battery works according to a certain state of charge (SOC) window and current limits. The state of health (SOH) of the battery is also considered in the optimization. The motor and engine efficiencies increase by 3.61% and 2.86%, respectively, with the proposed control structure, while the computational cost is reduced by 52.01% when utilizing the proposed event-triggering mechanism in the NMPC controller.
KW - Deep Q Network
KW - energy management
KW - event-triggered mechanism
KW - model predictive control
KW - parallel hybrid electric vehicle type 2
UR - http://www.scopus.com/inward/record.url?scp=85163705130&partnerID=8YFLogxK
U2 - 10.3390/wevj14060135
DO - 10.3390/wevj14060135
M3 - Article
AN - SCOPUS:85163705130
VL - 14
JO - World Electric Vehicle Journal
JF - World Electric Vehicle Journal
IS - 6
M1 - 135
ER -