Elyazisi Verileri Üzerinde YSA ve DVM' nin Siniflandirma Başarimlarinin Karşilaştirilmasi

Fatih Kahraman, Abdülkerim Çapar, Alper Ayvaci, Hakan Demirel, Muhittin Gökmen

Araştırma sonucu: ???type-name???Konferans katkısıbilirkişi

7 Atıf (Scopus)

Özet

This study is about the selection of classifiers in handwritten character recogntition. The aim of the study is to determine the most appropriate classifier type for a given handwritten character feature vector. PCA based features were classified by both Multilayer Artificial Neural Networks (ANN) and Support Vector Machines (SVM), than the recognition results were compared. We select Error Backpropagation, Resilient Backpropagation and Scaled Conjugate Gradients as ANN training methods, besides selected SVM kernel types are lineer, RBF and polynomial. The experimental results shows us the SVM has beter train and test performance with respect to ANN.

Tercüme edilen katkı başlığıComparison of SVM and ANN performance for handwritten character classification
Orijinal dilTürkçe
Ana bilgisayar yayını başlığıProceedings of the IEEE 12th Signal Processing and Communications Applications Conference, SIU 2004
EditörlerB. Gunsel
Sayfalar615-618
Sayfa sayısı4
Yayın durumuYayınlandı - 2004
EtkinlikProceedings of the IEEE 12th Signal Processing and Communications Applications Conference, SIU 2004 - Kusadasi, Turkey
Süre: 28 Nis 200430 Nis 2004

Yayın serisi

AdıProceedings of the IEEE 12th Signal Processing and Communications Applications Conference, SIU 2004

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???Proceedings of the IEEE 12th Signal Processing and Communications Applications Conference, SIU 2004
Ülke/BölgeTurkey
ŞehirKusadasi
Periyot28/04/0430/04/04

Parmak izi

Elyazisi Verileri Üzerinde YSA ve DVM' nin Siniflandirma Başarimlarinin Karşilaştirilmasi' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap