Efficient hardware implementation of artificial neural networks using approximate multiply-accumulate blocks

Mohammadreza Esmali Nojehdeh, Levent Aksoy, Mustafa Altun

Araştırma sonucu: Kitap/Rapor/Konferans Bildirisinde BölümKonferans katkısıbilirkişi

15 Atıf (Scopus)

Özet

In this paper, we explore efficient hardware implementation of feedforward artificial neural networks (ANNs) using approximate adders and multipliers. We also introduce an approximate multiplier with a simple structure leading to a considerable reduction in the ANN hardware complexity. Due to a large area requirement in a parallel architecture, the ANNs are implemented under the time-multiplexed architecture where computing resources are re-used in the multiply-accumulate (MAC) blocks. The efficient hardware implementation of ANNs is realized by replacing the exact adders and multipliers in the MAC blocks by the approximate ones taking into account the hardware accuracy. Experimental results show that the ANNs designed using the proposed approximate multiplier have smaller area and consume less energy than those designed using previously proposed prominent approximate multipliers. It is also observed that the use of both approximate adders and multipliers yields respectively up to a 64% and 43% reduction in energy consumption and area of the ANN design with a slight decrease in the hardware accuracy when compared to the exact adders and multipliers.

Orijinal dilİngilizce
Ana bilgisayar yayını başlığıProceedings - 2020 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2020
YayınlayanIEEE Computer Society
Sayfalar96-101
Sayfa sayısı6
ISBN (Elektronik)9781728157757
DOI'lar
Yayın durumuYayınlandı - Tem 2020
Etkinlik19th IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2020 - Limassol, Cyprus
Süre: 6 Tem 20208 Tem 2020

Yayın serisi

AdıProceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI
Hacim2020-July
ISSN (Basılı)2159-3469
ISSN (Elektronik)2159-3477

???event.eventtypes.event.conference???

???event.eventtypes.event.conference???19th IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2020
Ülke/BölgeCyprus
ŞehirLimassol
Periyot6/07/208/07/20

Bibliyografik not

Publisher Copyright:
© 2020 IEEE.

Parmak izi

Efficient hardware implementation of artificial neural networks using approximate multiply-accumulate blocks' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap