ECG beat classification by a novel hybrid neural network

Zümray Dokur*, Tamer Ölmez

*Bu çalışma için yazışmadan sorumlu yazar

Araştırma sonucu: Dergiye katkıMakalebilirkişi

194 Atıf (Scopus)

Özet

This paper presents a novel hybrid neural network structure for the classification of the electrocardiogram (ECG) beats. Two feature extraction methods: Fourier and wavelet analyses for ECG beat classification are comparatively investigated in eight-dimensional feature space. ECG features are determined by dynamic programming according to the divergence value. Classification performance, training time and the number of nodes of the multi-layer perceptron (MLP), restricted Coulomb energy (RCE) and a novel hybrid neural network are comparatively presented. In order to increase the classification performance and to decrease the number of nodes, the novel hybrid structure is trained by the genetic algorithms (GAs). Ten types of ECG beats obtained from the MIT-BIH database and from a real-time ECG measurement system are classified with a success of 96% by using the hybrid structure.

Orijinal dilİngilizce
Sayfa (başlangıç-bitiş)167-181
Sayfa sayısı15
DergiComputer Methods and Programs in Biomedicine
Hacim66
Basın numarası2-3
DOI'lar
Yayın durumuYayınlandı - 2001

Parmak izi

ECG beat classification by a novel hybrid neural network' araştırma başlıklarına git. Birlikte benzersiz bir parmak izi oluştururlar.

Alıntı Yap